SQRT

in English | em Português

Cited in • Citado em

  1. Kapur, D. (2013). Elimination Techniques for Program Analysis. In Programming Logics (pp. 194-215). Springer Berlin Heidelberg.
  2. Popov, N., & Jebelean, T. (2009). Using Computer Algebra techniques for the specification, verification and synthesis of recursive programs. Mathematics and Computers in Simulation, 79(8), 2302-2309.
  3. Rodríguez-Carbonell, E., & Kapur, D. (2007). Automatic generation of polynomial invariants of bounded degree using abstract interpretation. Science of Computer Programming, 64(1), 54-75.
  4. Rodríguez-Carbonell, E., & Kapur, D. (2007). Generating all polynomial invariants in simple loops. Journal of Symbolic Computation, 42(4), 443-476.
  5. Bagnara, R., Rodríguez-Carbonell, E., & Zaffanella, E. (2005). Generation of basic semi-algebraic invariants using convex polyhedra (pp. 19-34). Springer Berlin Heidelberg.
  6. Kovacs, L., Popov, N., & Jebelean, T. (2005). A Verification Environment for Imperative and Functional Programs in the Theorema System. Annals of Mathematics, Computing and Teleinformatics (AMCT), TEI Larissa, Greece, 1(2), 27-34.
  7. Hain, T. F., & Mercer, D. B. (2005). Fast floating point square root. sign, 1(7), 7-8.
  8. Rodríguez-Carbonell, E., & Kapur, D. (2004, July). Automatic generation of polynomial loop invariants: Algebraic foundations. In Proceedings of the 2004 international symposium on Symbolic and algebraic computation (pp. 266-273). ACM.
  9. Rodríguez-Carbonell, E., & Kapur, D. (2004). An abstract interpretation approach for automatic generation of polynomial invariants. In Static Analysis (pp. 280-295). Springer Berlin Heidelberg.

Photography by NASA